Lichteinfälle

Licht und Farbe bei Isaac Newton und Maurice Merleau-Ponty

Matthias Meindl und Jörg Silbermann

»Die Bewegung des Falls scheint prototypisch für Phänomene des Plurale 1 Kontrollverlusts (...).« In diesem ersten Satz des Exposés der vorliegenden Ausgabe von Plurale ist der Schein angesprochen, der Schein des Kontrollverlusts in der Bewegung des Falls. Damit ist auch die Ambivalenz des Falls angesprochen, um den es im Folgenden gehen wird: den Lichteinfall und dem, was der Fall ist, wenn wir Farben sehen.

(2002), 69-98

Isaac Newtons »Opticks«

Isaac Newtons Opticks – sein optisches Hauptwerk, das wir im Folgenden betrachten - sind alles andere als ein Werk aus einem Guss. Seine verwickelte Entstehungsgeschichte nachzuzeichnen kann hier nicht unternommen werden,¹ einiges muss für die methodologische Untersuchung des Werkes jedoch in Betracht gezogen werden. Die Gestalt, in der sich die Opticks dem Leser heute meist präsentieren, ist folgende: Die ersten beiden Bücher setzen sich zusammen aus Beschreibungen von optischen Versuchen und ihrer Erklärung. Hierfür überarbeitet und kompiliert Newton vor allem Abhandlungen, deren Abfassung im Erscheinungsjahr der Opticks, 1704, über 25 Jahre zurücklagen. Dagegen machen den größten Teil des dritten Buches der Opticks die »Queries« aus; dies sind in Form von Fragen formulierte Konjekturen und Spekulationen über das Wesen von Licht und über thematisch weiter entfernte physikalische und chemische Phänomene, deren Umfang mit jeder neuen Edition der Opticks zunahm. Es ist unumstritten, dass diese Form des Werkes von Newton nicht ursprünglich intendiert war. So

1 Zu Entstehungsgeschichte und wissenschaftsgeschichtlichem Hintergrund vgl. Hall 1995, Sepper 1994

schreibt Hall in seinem detaillierten Kommentar zu den Opticks:

The Queries, then, represent afterthoughts, modernizations, the filling of gaps; but even more they surely reflect Newton's need, before the book left his hands, to say something deeper and therefore [sic!] more speculative about the natural philosophy of which it was one aspect.²

2 Hall 1995, 128

Nach Halls Darstellung hatte Newton in einem weiteren Buch der *Opticks* beabsichtigt, die beobachteten Phänomene in den explikatorischen Kontext der Bewegungsmechanik seiner *Principia mathematica* zu stellen, deren Gültigkeit also vom Makrokosmos auf den Mikrokosmos auszuweiten.³ Diese Ambition vermögen die doch recht diffusen Oueries sicher nicht einzulösen.

3 Vgl. Hall 1995, 87ff, 128f, 166

Wissenschaftsgeschichtlich mag man Newtons Buch dennoch als wegweisendes Buch einstufen. Schließlich beginnt Newton sein Buch mit dem Vorsatz: »Es ist nicht meine Absicht, in diesem Buche die Eigenschaften des Lichts durch Hypothesen zu erklären, sondern nur, sie anzugeben und durch Rechnung und Experiment zu bestätigen.«⁴ In diesem Satz manifestieren sich Newtons Anstrengungen um eine wirklich strenge wissenschaftliche Methode. Wissenschaftlich ist das, was experimentell belegt und nach Möglichkeit auch mathematisch formalisiert werden kann. Zieht man dies in Betracht, wird auch verständlich, warum in den *Opticks* die »Queries«, mit ihrem Übermaß an physikalischen und metaphysischen Fragestellungen, so unverbunden neben dem »Haupttext« stehen, warum sie in diesem nichts zu suchen haben.

4 Newton 1983, 5

Das Bemühen um eine strenge Methode ist auch ein Bemühen um einen anderen Ausgangspunkt. Welche Kräfte in der Natur am Werk sind, ist beschrieben an Hand von Experimenten. Phänomene, deren wir in der Natur ansichtig werden, zu erklären, heißt sie geschickt in Versuchsanordnungen zergliedern zu können. Was aber bedeutet es, bei Newton, einen Grund angeben zu können, d. h. etwas zu erklären? Newton schreibt in Query 31:

Was ich Anziehung nenne, kann durch Impulse oder auf anderem, mir unbekanntem Wege zu Stande kommen. Ich brauche das Wort nur, um im allgemeinen irgend eine Kraft zu bezeichnen, durch welche Körper gegen einander hin streben, was auch die Ursache davon sein möge [sic!]. Erst müssen wir aus den Naturerscheinungen lernen, welche Körper einander anzie-

hen, und welches die Gesetze und die Eigenthümlichkeiten dieser Anziehung sind, ehe wir nach der Ursache fragen, durch welche die Anziehung bewirkt wird.⁵

5 Newton 1983,

Wenn man uns sagt, jede Species der Dinge sei mit einer specifischen verborgenen Eigenschaft begabt, durch welche sie wirkt und sichtbare Effecte hervorbringt, so ist damit gar nichts gesagt; wenn man aber aus den Erscheinungen zwei oder drei allgemeine Principien der Bewegung herleitet und dann angiebt, wie aus diesen klaren Principien die Eigenschaften und Wirkungen aller körperlichen Dinge folgen, so würde dies ein grosser Fortschritt in der Naturforschung sein, wenn auch die Ursachen dieser Principien noch nicht entdeckt wären.«

6 Newton 1983, 267

Diese Zitate verdeutlichen, warum die Queries – philosophisch und ideengeschichtlich zwar interessant – wissenschaftsgeschichtlich nicht den wegweisenden Teil der *Opticks* ausmachen. Or as Hall puts it:

Newton was surely aware – though he was a man liable to be borne into over-confidence by the rich seductive flow of his own perception of things – that speculation about the ultimate forces of Nature was, despite all the suggestive analogy and comparison available to him, far advanced along a progression away from what would one day be called positivism.⁷

7 Hall 1995, 179

Hall ist in diesem Zitat eine gewisse Feierlichkeit anzumerken, während er Newton als ersten Arbeiter in die Steinbrüche des Positivismus schickt; wir werden indes weiter unten diese Geschichte noch von einer kritischeren Warte aus erzählen.

Einige Experimente – Newtons Bestimmung des Farbspektrums

Die Bewegung des Falls bei Newton ist die Bewegung von Fall zu Fall, von Experiment zu Experiment. Einige dieser Experimente, im Zuge derer Newton zur Einteilung des Farbspektrums gelangt sollen nun genauer beschrieben werden.

Ein für Newtons Optik sehr grundlegender Lehrsatz ist: »Das Licht der Sonne besteht aus Strahlen verschiedener Brechbarkeit.«⁸ Dies beweist Newton in einer Folge von Versuchen.

8 Newton 1983,

Im 3. Versuch des 1. Teils lässt er durch eine Öffnung im Fensterladen Sonnenstrahlen auf ein Prisma einfallen und wirft das Bild der Sonne auf die gegenüberliegende Wand. Dabei justiert er das Prisma

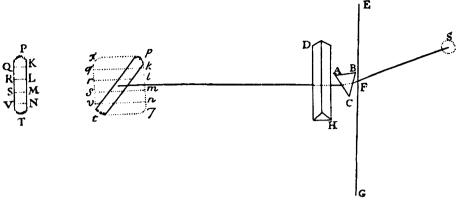


Abb. 1 I. Buch, I. Teil, 5. Versuch; aus Newton 1983 [1898], 25.

so, dass der Winkel beim Eintritt der Strahlen in das Prisma gleich dem Winkel des Austritts ist. Wenn das Sonnenlicht aus Strahlen gleicher Brechbarkeit bestünde, wäre nun zu erwarten, dass an der Wand ein rundes Abbild der Sonne zu sehen wäre. Stattdessen entsteht ein längliches Bild und zwar kein Oval, sondern eine längliche Figur mit zwei geradlinigen, parallelen Seiten, deren Enden begrenzt sind durch zwei Halbkreise. Diese längliche Figur zeigt das Farbspektrum; es ist zu seinem weniger gebrochenen Ende hin rot, zu seinem stärker gebrochenen Ende hin violett und dazwischen verteilen sich die Farben von ersterem Ende zum letzteren in der Reihenfolge Gelb, Grün und Blau. Im 5. Versuch erweitert Newton dann den Versuchsaufbau folgendermaßen: Hinter das erste Prisma stellt er kreuzweise zu diesem ein zweites Prisma. Würden die im ersten Prisma gebrochenen Strahlen nun weiter dissoziieren, so wäre zu erwarten, dass aus der länglichen Figur nunmehr ein Quadrat würde.

Stattdessen aber kommt es nur zu einer weiteren Brechung der Strahlen, die nicht zu einer Veränderung der Breite der Figur führt, sondern nur zu einer Schrägstellung, weil das violette Ende des Spektrums erneut stärker gebrochen wird als das rote. Die in der Brechung durch das erste Prisma entstandenen homogenen Lichtsorten werden nicht weiter zerlegt. Gemäß ihrer Brechbarkeit angeordnet entsprechen den Lichtsorten einfarbige Kreise, die sich überlagernd die längliche Figur zusammensetzen.

Lichteinfälle

Täuschen lassen darf man sich hierbei nicht, dass Newton, wie in der Abb. 2 zu sehen ist, fünf Kreise (wohl den Farben Rot, Grün, Gelb, Blau und Violett entsprechend) herausgreift. Newton ist sich der *Dichte* des Spektrums - d. h. dass sich in ihm unzählige viele Kreise überlagern - durchaus bewusst.

Den beschrieben Versuchsaufbau legt Newton dann auch im 7. Versuch des zweiten Teils des ersten Buchs zu Grunde, in dem er sich die Aufgabe stellt, »[d]ie den verschiedenen Farben entsprechende Brechbarkeit der einzelnen Arten des homogenen Lichts zu bestimmen.«9 9 Newton 1983, 81 Zu diesem Zweck zeichnet Newton auf ein Papier den Umriss der länglichen Figur, bringt ihn zur Deckung mit dem Farbband und lässt einen Assistenten, »dessen Augen für Unterscheidung von Farben schärfer waren«10 ausgehend von den Begrenzungslinien der Figur, an 10 Newton 1983, denen die Farben weniger vermischt sind, rechtwinklige Striche ziehen. Nach mehrfacher Wiederholung dieses Vorgangs, stellt Newton fest, dass das Spektrum auf die Art und Weise geteilt ist »wie die Saite

K D

Abb. 2 I. Buch, I. Teil, 5. Versuch; aus Newton 1983 [1898], 27.

Damit vermag Newton nun die Farben zwischen den Brechungs-

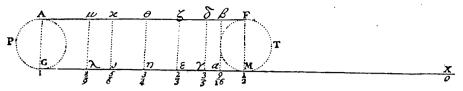


Abb. 3 I. Buch, II. Teil, 7. Versuch; aus Newton 1983 [1898], 82.

11 Newton 1983, eines musikalischen Instruments«¹¹, fixiert es also als ein einfaches Ver-⁸² hältnis von Brüchen.

> indizes einzugrenzen, das heißt den gegebenen Verhältnissen zwischen dem Sinus des gemeinsamen Einfallswinkels und der verschiedenen Brechungswinkel. Die Farbe des Lichts wird somit korreliert mit Lichtstrahlen bestimmter Brechbarkeit. Interessant ist die Simplifizierung der Theorie, die Newton in den Opticks vornimmt. In dem beschriebenen Versuch errechnet er die Verhältnisse der Refrangibilität zwar explizit nur für die Brechung aus Glas in Luft. Dies führt aber nicht dazu, dass er den Effekt der unterschiedlichen Brechung der Lichtstrahlen, die sogenannte Dispersion, auch in Abhängigkeit setzt von der Materialart des Brechungsmediums. Unterschiedliche Brechungsmedien können auch unterschiedlich lange Spektren erzeugen. Darüber hinaus sind die Anteile des Spektrums, die von den einzelnen Farben eingenommen werden, nicht für alle Licht brechenden Materialien gleich. Einzelne Messungen können somit nicht den Anspruch auf universale Gültigkeit erheben.¹² Die zu geringe experimentelle Grundlage muss hier als ein Grund für das Verkennen dieses Zusammenhanges angesetzt werden. Newton benutzte nur Prismen aus Glas oder mit Wasser gefüllte Prismen aus zusammengekitteten Glasplatten, die sich in ihrem Brechungsindex in etwa entsprechen. Indes, dies allein mag aber nicht als der letztendliche Grund gelten, warum Newton die Abhängigkeit der Dispersion vom Brechungsmedium nicht in die Opticks aufgenommen hat, denn nach Halls Darstellung hatte er Unterschiede in der Länge der Spektren bei der Verwendung verschiedener Prismen festgestellt, begnügte sich aber damit, das eine Versuchsergebnis als das stimmigere dem anderen gegenüber zu favorisieren. Wie Hall es darstellt, geschieht dies im Glauben an die Einfachheit der

12 Vgl. Sepper 1994, 98 f

Natur, im Glauben an ihre einfache Mathematisierbarkeit. Darüber hinaus kann man jedoch die Frage stellen, ob die Vereinfachung nicht der Funktion des Gesetzes inhärent ist. Mehr noch als das wandlungsfähige Gesetz im juristischen Sinne, das nach hermeneutischer Tradition verwachsen ist mit dem Textkorpus seiner Auslegung, gerät das postulierte Naturgesetz, allzu oft als objektiv und zeitlos verstanden, in die Gefahr, dem einzelnen Fall nicht gerecht zu werden, blind gegenüber dem zu sein, was sich im Ereignis nicht so verhält, wie es vor-schreibt. So schreibt Deleuze in *Differenz und Wiederholung*:

Wir müssen [...] danach fragen, unter welchen Bedingungen das Experiment eine Wiederholung garantiere. Die Naturphänomene geschehen unter freiem Himmel und lassen in weitläufigen Zyklen von Ähnlichkeit alle möglichen Schlußfolgerungen zu: In diesem Sinne reagiert alles mit allem, ähnelt alles allem (die Ähnlichkeit des Verschiedenen mit sich). Das Experiment entwirft aber relativ geschlossene Milieus, in denen wir ein Phänomen in Abhängigkeit von einer kleinen Anzahl ausgewählter Faktoren definieren [...]. Es besteht folglich kein Grund, nach der Anwendung der Mathematik in der Physik zu fragen: Die Physik ist unmittelbar mathematisch, da die berücksichtigten Faktoren oder geschlossenen Milieus ebensogut geometrische Koordinatensysteme konstituieren. Unter diesen Bedingungen erscheint ein Phänomen notwendig gleichgesetzt mit einer bestimmten quantitativen Relation zwischen ausgewählten Faktoren. Es handelt sich also beim Experiment darum, eine Ordnung von Allgemeinheit durch eine andere zu ersetzen: eine Ordnung von Ähnlichkeit durch eine Ordnung 13 Deleuze 1992, von Gleichheit.13

17f

Das Experimentieren behält in Bezug auf das Gesetz eine gewisse Ambiguität. Newton wiederholt seine Versuche – wie oben angedeutet - mehrmals; seine peinlich genauen Beschreibungen der Versuchsaufbauten sollen auch Anleitungen sein, die es seinen Lesern ermöglichen, die Experimente zu wiederholen. Experimente müssen wiederholbar sein, denn so will es das Gesetz, das selbst abhängig ist von dieser Wiederholung. Bedroht aber ist dabei die Wiederholbarkeit in der Überforderung der Wachsamkeit im Versuchsaufbau und durch die Tücke des Materials, die oft genug als Vorwand dient, wenn etwas Unerlaubtes geschieht. Darüber hinaus ist das Gesetz aber auch expansiv. Es soll als identisches wiedergefunden werden, wenn der Versuch mit bestimmten Veränderungen in seinem Aufbau wiederholt wird. Identisch

bleibt es dabei auch, wenn – finden sich bestimmte Relationen in dem veränderten Versuch nicht wieder - ein allgemeineres Gesetz gefunden werden kann, das die Fälle zu umgreifen vermag. Dieses Gelingen steht im Experimentieren in Frage. In diesem Sinne ist die Bewegung von Fall zu Fall kontrollierter Kontrollverlust, und hierin bewies Newton seine besondere Intuition.

Newtons Verständnis von Farbe

Was aber ist Farbe bei Newton? Man könnte die einfache These aufstellen: Farbe ist für Newton eine physikalische, quantifizierbare Eigenschaft des Lichts. Im Widerspruch zu dieser einfachen These steht eine Argumentation Gerald S. Wassermans. Er bezieht sich dabei auf die Definition, die Newton der Aufgabe, »[d]ie den verschiedenen Farben entsprechende Brechbarkeit der einzelnen Arten des homogenen Lichts zu bestimmen« voranstellt:

Das homogene Licht und die Strahlen, welche roth erscheinen oder vielmehr welche die Gegenstände roth erscheinen lassen, nenne ich >Roth erregende, die Lichtstrahlen, welche die Körper gelb, grün, blau und violett erscheinen lassen, Gelb erregende, Grün, Blau, Violett erregende u. s. w. Und wenn ich einmal von Lichtstrahlen als farbigen oder gefärbten Strahlen spreche, so ist dies nicht wissenschaftlich oder im strengsten Sinne zu verstehen, sondern als gewöhnlicher, volksthümlicher Ausdruck, entsprechend der Vorstellung, die sich das gemeine Volk beim Anblick von Versuchen bilden würde.14

14 Newton 1983,

Nach Wasserman gibt es bei Newton wohl Ansätze einer Unterschei-15 Wasserman dung zwischen »stimulus« und »sensation«¹⁵. Dafür spricht zum Beispiel Newtons Beschreibung des Helligkeitskontrasts:

> In the context of Newton's description of subtractive color mixture, brightness contrast was also described. Newton noted that a stimulus can change its appearance from white to black depending upon the relative intensity of the lights around it. This occurred when he let the sun's rays fall on a spot and manipulated the intensity of the spot relative to the background. It is interesting to consider Newton's awareness of this subjective effect, which totally changes the appearance of a physically constant stimulus. And yet elsewhere, Newton sometimes used language that implied a one-to-one correspondence between the stimulus and the perception.«16

16 Wasserman 1978, 21f

»Stimulus« und »appearance« sollen hier also auseinandertreten: Etwas erscheint grau, schwarz, obwohl es doch eigentlich weiß ist. Was aber bedeutet es, dass es eigentlich weiß ist? Eigentlich weiß kann hier nur bedeuten, bei gewöhnlichem oder genormten Licht erscheint es weiß. Die heutige *psychophysische* Wissenschaft vom Farbensehen widmet sich genau diesem Verhältnis: wie Probanden auf physikalisch genau definierte Stimuli ansprechen.¹⁷

17 Wasserman 1978, 13

Von dieser Konzeption aber ist Newton sicherlich weit entfernt. Allerdings darf man dabei nicht außer Acht lassen, dass er Physiker und kein Physiologe war. Es finden sich nur wenige physiologische Erwägungen bei Newton:

Frage 12. Erregen nicht die Lichtstrahlen, wenn sie auf den Hintergrund das Auges fallen, Schwingungen auf der Netzhaut, die sich entlang der festen Fasern der Sehnerven bis zum Gehirn verbreiten und dort den Eindruck des Sehens hervorrufen? [...]

Frage 13. Machen nicht verschiedene Arten von Lichtstrahlen Schwingungen von verschiedener Größe und erregen dadurch die Empfindung verschiedener Farben [...].¹⁸

18 Newton 1983, 227f

So wenig ergiebig diese Textstellen auch sind, zwischen »stimulus« und »appearance« besteht ein einfaches Kausalverhältnis. Sehen wir zuerst rot, dann blau, dann liegt das an der Erregung von Vibrationen unterschiedlicher Intensität.

Auch in der oben beschriebenen Einteilung des Farbspektrums wird der Unterscheidung von »stimulus« und »appearance« keine große Beachtung geschenkt. Newton verlässt sich einfach auf die subjektive Wahrnehmung seines Assistenten, um das Ergebnis in der musikalischen Analogie wohl noch zu extrapolieren. Hall schreibt dazu:

The analogy between colours and musical harmony – as old as Aristotle – provided Newton with a convenient rationale enabling him to choose precise fractions for the limits of the colours, where unambiguous determinations are difficult and perhaps impossible for the eye.¹⁹

19 Hall 1995, 113

Impossible for the eye? Für welches Wundergadget wäre die Unterscheidung von Farben dann möglich? So unfreiwillig komisch wie Halls Bemerkung auch sein mag, sie erhellt doch etwas: Warum sollten wir die Einteilung, die Newton mit Hilfe seines Assistenten vornimmt, nicht gelten lassen? Die für die Farben festgestellten Refrangibilitäten

könnten nun den Stimulus definieren. Newtons Assistent liefert die Standardwahrnehmung und kann uns als Vergleichsgrundlage für die subjektive Wahrnehmung anderer Probanden dienen. Sofern wir in Newtons Assistenten nicht jemand mit einer ausgewiesen anormalen Farbwahrnehmung hätten, die unserer alltäglichen Verständigungsbasis widerspricht, würd's das nicht tun? Dies indes wäre bereits ein großer Schritt hin zu einer psycho-physiologischen Betrachtung von Farbe und Farbwahrnehmung, für die, so ließe sich sagen, Newton (nur) das Feld geöffnet hat.

Dadurch aber, dass in seinen Opticks die unterschiedlichen Farben in einer strengen Korrelation an die unterschiedliche Refrangibilität von Lichtstrahlen gebunden sind und diese Korrelation den Ausgangspunkt für die mathematische Formalisierung von Farbe darstellt, wird die Problematik offenbar, die mit der auf Experimentieren und Beobachten basierenden Methode Newtons einher geht: Newton tendierte zu einer zu perfekten Korrespondenz von Wahrnehmung und einer Physik, die das Verhältnis der Lichtstrahlen in den Mittelpunkt stellt, 20 die, so möchte man anschließen, den Beobachter voraussetzen muss, um ihn am Ende an den aus anfänglichen Beobachtungen abgeleiteten mathematischen Verhältnissen zu tilgen. Was als Studium der wahrgenommenen Farben beginnt, wird im Verlauf des Experimentie-21 Sepper 1994, rens und Formalisierens zu einer »ray analysis«²¹ – die doch auf den Beobachter nicht verzichten kann.

20 Vgl. Sepper 1994, 90

22 Newton 1983,

23 Newton 1983, 24 Vgl. Newton

Newton leistet auch einen Beitrag »[a]us den nachgewiesenen Eigenschaften des Lichts die dauernden Farben der natürlichen Körper zu erklären.«²² Er kommt dabei zu der grundlegenden Erkenntnis, dass die Körper farbig »sind«, weil sie die jeweilige Farbe erregenden Strahlen stärker reflektieren als andere Arten. Um dies nachzuweisen, setzt er Zinnober und Ultramarin einem homogenen roten Licht aus. Beide erscheinen Rot, das Ultramarin aber freilich nur in einem schwachen, dunklen Rot, während das Ultramarin, »in dem Lichte seiner eigenen 1983, 116 Farbe«23 glänzend und hell aussieht.24

> Widmen wir uns hier noch einmal der oben angerissenen Problematik von Stimulus und Erscheinung - wo ist dann die Farbe im beschriebenen Aufbau? Sicherlich am Wenigsten ist die Farbe beim Körper selbst. Dieser ist Reflektor von besonderer Beschaffenheit. Eher ist

die Farbe schon beim Licht, aber auch in diesem Textabschnitt zieht sich immer wieder die Formulierung der eine Farbe erregenden Strahlen durch. Um diese Schwierigkeiten im Newton'schen Text zu erklären, hilft es, ihn im Lichte der zu Newtons Zeit dominierenden cartesianischen Erkenntnistheorie zu lesen. Hier finden sich die Schwierigkeiten wieder.

Folgendermaßen beschreibt Descartes in der dritten Meditation das Verhältnis von den Dingen als Ursachen unserer Vorstellungen (Wirkungen) von ihnen:

Nun ist es aber durch das natürliche Licht offenkundig, daß mindestens ebensoviel Sachgehalt in der gesamten wirkenden Ursache vorhanden sein muß wie in der Wirkung ebendieser Ursache. Denn ich frage: woher sonst sollte die Wirkung ihren Sachgehalt nehmen, als von der Ursache; und wie könnte ihn die Ursache ihr geben, wenn sie ihn nicht selbst besäße. Hieraus folgt aber, daß weder etwas aus dem Nichts, noch auch etwas Vollkommeneres – d. h. was einen größeren Sachgehalt besitzt – aus dem weniger Vollkommenen entstehen kann; und zwar ist dies nicht nur augenscheinlich wahr für die Wirkungen, deren Sachgehalt wirklich oder gegenständlich ist, sondern auch für die Vorstellungen, bei denen der Sachgehalt nur als ihre Bedeutung in Betracht kommt. D. h. z. B. ein Stein, der vorher nicht war, kann jetzt nur zu sein anfangen, wenn er von einer Sache hervorgerufen wurde, die alles das in der gleichen oder in einer vollkommeneren Form enthält, was in dem Stein angelegt ist. Auch kann die Wärme auf einen Gegenstand, der vorher nicht warm war, nur von einer Sache übertragen werden, die wenigstens ebenden Vollkommenheitsgrad besitzt wie die Wärme selbst, und so bei allem übrigen; aber nicht nur dies, sondern außerdem kann auch die Vorstellung der Wärme oder des Steines nur dann in mir sein, wenn sie in mir von einer Ursache gesetzt wurde, die wenigstens soviel Sachgehalt besitzt, wie ich ihn mir in der Wärme oder dem Steine vorstelle.²⁵

25 Descartes 1996, 73 f

Aus dieser Argumentation folgt bei Descartes aber freilich nicht, dass er der sinnlichen Wahrnehmung große Bedeutung beimäße. So Descartes in der sechsten Meditation:

Es gibt indessen noch vieles andere, was ich, obgleich es den Anschein erweckt, als hätte die Natur es mich gelehrt, dennoch in Wahrheit nicht von ihr empfangen, sondern mir selbst aus einer Art Gewohnheit, unüberlegt zu urteilen, angeeignet habe, und das daher leicht falsch sein kann; [...] daß z.B. in einem warmen Körper irgend etwas meiner Wärmeempfindung durchaus ähnlich sei; in einem weißen oder grünen Körper ebendas von mir

26 Descartes 1996, 147 empfundene »grün« oder »weiß«, [...] daß Gestirne, Türme und beliebige andere entfernte Körper von ebender Größe und Gestalt seien, in der sie sich meinen Sinnen zeigen und anderes der Art.26

In diesem Zusammenhang findet sich ein auch heute noch immer wiederkehrender Gedanke: Unsere Empfindungen, paradigmatisch hierfür der Schmerz, sind dazu geeignet, anzuzeigen, was unserem Erhalt zuträglich oder abträglich ist, fälschlicherweise gebraucht sie der Mensch »aber wie sichere Regeln, um unmittelbar zu erkennen, worin das Wesen der außer mir befindlichen Körper besteht, wovon sie mir 1996, 149f doch nur sehr dunkle und verworrene Kunde geben.«²⁷

27 Descartes

Um zur Wahrheit zu gelangen, ist eine Prüfung durch den Verstand unabdingbar. Anlässlich einer »Meditation« über ein Stück Wachs zeigt sich Descartes bestürzt, dass er sich durch den normalen Sprachgebrauch fast dazu verleitet fände, zu meinen, er sähe das Wachs selbst, wenn es da ist, wo er doch eigentlich nur urteile nach Farbe und Gestalt, dass es da sei. Ein Blick aus dem Fenster genügt, dies wieder ins rechte Licht zu rücken. Sieht er doch nur die vorbeieilenden Hüte und Kleider - einzig und allein die Verstandeskraft kann urteilen, dass sich unter den Kleidungsstücken Menschen und nicht Automaten verber-

28 Descartes 1996, 57f gen. 28

> Die Wahrheit von Vorstellungen indes ist nur in Gott verbürgt, dessen Vorstellung allein nicht sinnlich eingegeben, nicht ausgedacht, sondern angeboren ist. Und da Gott kein Betrüger ist, ist es unmöglich, dass Gott uns hinsichtlich der Existenz der Welt als Ganzes täuschen sollte.²⁹ Allerdings gibt es verschiedene Klassen von Vorstellungen, die verschiedene Evidenz haben. So schreibt Descartes zur Vorstellung körperlicher Dinge:

29 Vgl. Descartes 1996, 95ff

> [E]s [ist] nur sehr wenig [...], was ich in ihnen klar und deutlich durchschaue: nämlich die Größe oder Ausdehnung nach Länge, Breite und Tiefe, die Gestalt, die der Begrenzung dieser Ausdehnung entspringt, die Lage, die die verschiedenen Gestalten zueinander einnehmen, und die Bewegung oder die Veränderung dieser Lage. Hierzu kann man doch die Substanz, die Dauer und die Zahl hinzufügen. Alles übrige aber, wie Licht, Farben, Töne, Gerüche, Geschmäcke, Wärme und Kälte und sonstige Berührungsqualitäten, denke ich nur recht verworren und dunkel und also weiß ich nicht, ob sie wahr oder unwahr sind, d. i. ob die Vorstellungen, die ich von ihnen habe, Vorstellungen von irgend etwas sind oder von gar nichts.«30

30 Vgl. Descartes 1996, 79

Dass diese Unterscheidung motiviert ist durch die besondere Werthaltung mathematisch-geometrischer Vorstellungen, deren Evidenz Descartes sogar gleichsetzt mit der der Vorstellung Gottes, ist allgemein bekannt. Damit geht auch eine Abwertung des Lichts der Wahrnehmung einher. Wenn Descartes fortwährend vom »natürlichen Licht«, dem »lumen naturale«, schreibt – dem Licht, in dem etwas offensichtlich ist, so ist dies nicht eigentlich das Licht der Sonne, das uns die Dinge, so wie sie sind, erscheinen ließe, vielmehr ist dies ein intelligibles Licht.³¹

31 Vgl. Vasseleu

Newtons wissenschaftliche Praxis, mag diese in ihrer Strenge auch auf den Positivismus verweisen und die philosophische Spekulation durch das Experiment ersetzen, fußt doch zu einem gewissen Teil im erkenntnistheoretischen Fundament des Cartesianismus. Es ist nicht nur, dass am Ende der Erklärung eines Phänomens bei Newton die mathematische Formalisierung steht. Wichtig ist Newtons oben dargestelltes Eingeständnis, in seinen Experimenten immer nur zu Relationen von Kräften zu gelangen, letztlich Wirkungen, deren Ursachen aber verborgen bleiben. Da nimmt es auch nicht wunder, dass der Experimentator Newton die Erkenntnissituation des Menschen im Vergleich zu der Gottes wie folgt auffasst:

Und da dies Alles so wohl eingerichtet ist, wird es nicht aus den Naturerscheinungen offenbar, dass es ein unkörperliches, lebendiges, intelligentes und allgegenwärtiges Wesen geben muss, welches im unendlichen Raume, gleichsam seinem Empfindungsorgane, alle Dinge in ihrem Innersten durchschaut und sie in unmittelbarer Gegenwart völlig begreift, Dinge, von denen in unser kleines Empfindungsorgan durch die Sinne nur die Bilder geleitet und von dem, was in uns empfindet und denkt, geschaut und betrachtet werden? Und wenn uns auch jeder richtige, in dieser Philosophie gethane Schritt nicht unmittelbar zur Erkenntniss der ersten Ursache führt, bringt er uns doch dieser Erkenntniss näher und ist deshalb hoch zu schätzen.³²

32 Newton 1983,

Das Subjekt-Objekt-Schema impliziert also zweierlei: Die Welt, die – vielleicht nicht für sich, aber von einem höheren Standpunkt aus gesehen – letzte Eigenschaften besitzt und letzten Gesetzmäßigkeiten gehorcht und ein menschliches Subjekt, dem es – obwohl auf seinen unzureichenden Sinnesapparat zurückgeworfen – aufgegeben ist, diesem Standpunkt entgegenzustreben. Zweifel an diesem Projekt, lassen

33 Newton 1983, 34 Zu den »pantheistischen« Konnotationen in Newtons Text. nach denen das Universum sensorium Gottes sei, vgl. Hall 1995,

sich jedoch auch in Newtons Text finden, so wenn er einige Sätze vor dem zuletzt zitierten fragt, ob denn das Auge hergestellt sei »ohne Fertigkeit in der Optik und das Ohr ohne die Wissenschaft vom Schall?«33 Welcher Art ist denn der höhere Standpunkt dieses höheren Wesens, »welches im unendlichen Raum, alle Dinge in ihrem Innersten durchschaut und sie in unmittelbarer Gegenwart völlig begreift.«34 Fühlt, empfindet das höhere Wesen denn, was vor sich geht und kann es an diesen Empfindungen nicht zweifeln, weil es kein Außen, auch nicht seinen 136f Körper als Außen, kennt? Ist Erkennen dann nicht doch Empfinden?

Sicherlich gehört Newton nach Michel Foucaults Geschichtsschreibung in die Epoche des klassischen Denkens. Die epistemische Situation des Menschen ist hierin geprägt von seiner Beschränktheit gegenüber dem Unendlichen, welche ihm aber auch Ordnung seiner Sprache und des Seins verbürgt.35 Der Überstieg der Beobachtung in die Ordnung erfolgt daher bei Newton auch ganz selbstverständlich.

35 Vgl. Foucault 1990, 382

> Dennoch ist bei Newton schon etwas verschoben, das höhere Wesen ist aus dem »Haupttext« in den »Anhang« verschoben und es bleibt so fremd als kündeten sich Zweifel an, es könne tatsächlich noch die Methodik der menschlichen Erkenntnis verbürgen.

Mit dem Auftauchen des Menschen aber gewinnt das epistemische Differential von Subjekt und Objekt neue Dynamik. Die Endlichkeit wird aufgewertet und so rückt der Mensch ins Zentrum seines Wissens, in eine uneindeutige Position als Subjekt und als Objekt seiner 36 Vgl. Foucault Erkenntnis. 36 Positivismus ist für Foucault die Spielart der Wissenschaft, in der die Wahrheit des Diskurses begründet ist »in jener empirischen Wahrheit, deren Genese in der Natur und der Geschichte er wiedergibt«37, und so definiert mag man sie auch heute noch überall am Werke sehn. Mit dem Einrücken des Menschen ins Zentrum seiner Wissensproduktion gerät aber auch der Sinn des Seins von Subjekt und Objekt in Frage.

1990, 377

37 Foucault 1990,

38 Der Einfachheit halber

die negativ konnotierte Merlau-Pontys von »Wissen-

behalten wir hier Merleau-Pontys Kritik der Wissenschaft in »Das Sichtbare und das Unsichtbare« und Ansätze seiner späten Philosophie

Redeweise Gut zweieinhalb Jahrhunderte nach Newtons Entdeckungen sieht sich der Philosoph Maurice Merleau-Ponty denn auch alles andere als schaft« bei. veranlasst, eine Erfolgsgeschichte der »Wissenschaft«³⁸ zu erzählen. In

seinem zu Lebzeiten unveröffentlicht gebliebenen und 1964 posthum erschienenen Werk *Das Sichtbare und das Unsichtbare* gerät dabei unter anderem die Physik in die Kritik. Folgendermaßen beschreibt er den Irrglauben der Wissenschaft:

Das Wahre ist das Objektive, es ist das, was ich erfolgreich bestimmt habe aufgrund eines Maßstabes oder allgemeiner aufgrund von Operationen, welche durch die von mir definierten Variablen oder Entitäten für eine bestimmte Tatsachenordnung zugelassen sind. Solche Bestimmungen verdanken unserem Kontakt zu den Dingen überhaupt nichts: sie sind Ausdruck eines Annäherungsversuches, der in bezug auf das Erleben keinen Sinn hat, da das Erleben so zu nehmen ist, wie es ist, und »aus sich selbst heraus« gar nicht anders gesehen werden kann. Auf diese Weise hat die Wissenschaft von Anfang an alle Prädikate eliminiert, die den Dingen aufgrund unserer Begegnung mit ihnen zukommen. Diese Elimination ist aber nur eine vorläufige: denn die Wissenschaft wird das, was sie zunächst als subjektiv beiseite geschoben hat, nach und nach wiedereinführen, sobald sie es richtig einzuordnen weiß. Doch dann integriert sie das Erlebte nur noch als Spezialfall jener Relationen und Objekte, die aus ihrer Sicht die Welt definieren. Dann schließt sie die Welt in sich zusammen, und abgesehen von dem, was in uns denkt und Wissenschaft betreibt, abgesehen von jenem unbeteiligten Zuschauer, der in uns wohnt, werden wir unsererseits zu Bestandteilen oder Momenten des Großen Objekts.³⁹

39 Merleau-Ponty 1994, 31

Für Merleau-Ponty versucht die Wissenschaft unter einem falschen Paradigma der Objektivität ihre eigene Voraussetzung zu überwinden. Denn Wissenschaft wird genährt vom *Wahrnehmungsglauben*, der »Gewißheit nämlich, zu den ›Sachen selbst‹ zu gelangen«⁴⁰. Sie vernachlässigt jedoch, dass auch physikalische Erkenntnis eingebettet ist in *lebendige Erkenntnis*; sie ist somit situativ, perspektivisch und einer methodischen Praxis entspringend.⁴¹

Nun haben wir bei Newton gesehen, wie er versucht, an Hand von Experimenten Gesetzmäßigkeiten zu formulieren, ohne Wesensaussagen treffen zu müssen. Es ist dies ein Argument, das Merleau-Ponty nicht gelten lässt. Entzieht sich die Wissenschaft der *Pflicht*, begibt sie sich auch des *Rechts* ontologische Aussagen zu treffen. Dann müsste z. B. der Physiker seine Wissenschaft nicht nur »nur« als *Stil* begreifen, die Welt zu entdecken, ähnlich dem Stil eines Musikers oder Malers, vielmehr müsste er die Konsequenz aus seiner Haltung ziehen, eine uneigentliche Sprache zu sprechen und einen *vollkommen hermetischen*

40 Merleau-Ponty 1994, 33

41 Vgl. Merleau-Ponty 1994, 32

42 Vgl. Merleau-Ponty 1994, 34f

Diskurs für Experten begründen.⁴² Die Unmöglichkeit eines solchen Diskurses ist aber wohl offensichtlich. Wohl ist dies das Desiderat in einer Versuchsbeschreibung, in einer »Tatsachenordnung«, mehr aber noch in einem mathematisch formalisierten Gesetz, die Sprache rein, die Zeichen eindeutig werden zu lassen. So sind »Physik und Wissenschaft eine gewisse Art und Weise, die Tatsachen mit dem Algorithmus zu bearbeiten.«43, wobei die Algorithmen an sich leer, ihre Bedeutung nur aus Definitionen und deren strukturellem Zusammenhang gewinnen sollen. Merleau-Ponty aber widerspricht hier: Der Algorithmus als reine Sprache ist ein Hirngespinst. 44 Bedeutsam ist der Algorithmus nur, weil er in einem prekären Verhältnis der Übersetzung steht zu der Sprache, die wir sprechen.

43 Merleau-Ponty 1994, 34f

44 Vgl. Merleau-Ponty 1984, 27-31

> Die Wissenschaft ist ontologisch nicht so neutral wie sie sich oft gibt: Der Mensch wird in der Wissenschaft zum unbeteiligten Zuschauer und zum Teil des großen Objekts. Obwohl Merleau-Ponty und dies ist wohl der unvollendeten Ausarbeitung des Texts geschuldet - keine detaillierten Kritiken bestimmter Autoren vornimmt, ist seinem Text die Auseinandersetzung mit der Quantenphysik anzumerken. Dass die moderne Physik sich genötigt sieht, die Rolle des Beobachters wiedereinzuführen, ist für ihn kein Hinweis auf eine ontologische Revolution in der Physik. Das Erstaunen über die »›fremdartigen‹« Begriffe der neueren Physik, das Bestreben der Physiker, den Determinismus zu retten oder eine akausale Realität zu entdecken, ist für ihn nur Ausdruck eines tieferliegenden Missverständnisses in der erkennt-Ponty 1994, 33f nistheoretischen Architektur, die der Physik zugrunde liegt. 45

45 Merleau-

Noch schlimmer ist es nach Merleau-Ponty aber um die »Psychophysiologie« bestellt. Kann innerhalb der Physik, der Betrachtung der Körper der Außenwelt, das mechanistische Prinzip in Frage gestellt werden, scheinen die Widerstände größer, geht es um den Übergang der vom außenweltlichen Körper ausgehenden Stimuli in den menschlichen Wahrnehmungsapparat. Denn hier, so vermutet Merleau-Ponty, sind die Grundfesten des wissenschaftlichen, auf Adäquation beruhenden Wahrheitsbegriffs gefährdet:

Sobald man die Wahrnehmung nicht mehr als Wirkung des reinen physischen Objektes auf den menschlichen Körper und das Wahrgenommene nicht mehr als »inneres« Resultat/dieser Wirkung begreift, scheint eine

jede Unterscheidung zwischen dem Wahren und dem Falschen, zwischen einem methodischen Wissen und Phantasiegebilden, zwischen Wissenschaft und Imagination aufgehoben zu sein.46

46 Merleau-Ponty 1994, 45

Und so kann man wohl die Kritik, die Merleau-Ponty an der Gestaltpsychologie für seine Wissenschaftskritik verallgemeinern, denn:

[...] nirgendwo mehr hat man das Gefühl, sich einer Wissenschaft vom Menschen zu nähern. Und zwar deshalb [...], weil die Beziehungen, die sie festlegen, nur innerhalb der künstlichen Bedingungen des Laboratoriums etwas erklären können. Diese Beziehungen stellen nicht eine erste Schicht des Verhaltens dar, von welcher aus man nach und nach zu dessen umfassender Bestimmung gelangen könnte: eher sind sie eine erste Form von Integration, privilegierte Fälle einfacher Strukturierungen, die sich in 47 Merleau-Wirklichkeit unterscheiden von den ›komplexeren‹ Strukturierungen. 47

Ponty 1994, 39

Merleau-Ponty will eine andere Wissenschaft. Diese soll sich auf dem Boden der Lebenswelt orientieren, auf welchem die Wissenschaft eigentlich fußt. Ausgangspunkt ist hierbei der Leib: Der Leib ist nicht der Körper der Biologie und nicht ausgeblendeter Teil des Beobachters. Der Leib ist Ding der Außenwelt und Inszenator der Wahrnehmung. In diesem Chiasmus sieht Merleau-Ponty den eigentlichen Grund von Erkenntnis: Der Leib berührt und wird im Berühren berührt, er sieht und wird im Sehen gesehen, 48 er macht sich nicht nur ein Bild, sondern ist auch im Bilde, er agiert im Feld seiner Wahrnehmung. Dieser letztlich nicht schließbare Hiatus zwischen Innen und Außen wird bei Merleau-Ponty aufgewertet zur eigentlich produktiven Differenz. 49 Die Welt ist von meinem Fleisch und doch bin ich von ihr verschieden. Hieraus entspringt die Transzendenz, die Unfertigkeit der Welt, ihrer Dinge.

Feld, Horizont und Perspektivität charakterisieren unsere Wahrnehmung. Perspektivisch und horizonthaft verweist das Sichtbare dabei immer schon auf das Unsichtbare. Eine Arbeitsnotiz in Das Sichtbare und das Unsichtbare ist überschrieben mit »Gestalt«. In der Betrachtung der Anderen, des Sichtbaren, wie auch der Bewusstseinszustände kommunizieren wir mit einer Gestalt. In der Gestalt – einem Ganzen, das mehr ist als Summe seiner Teile – bezieht sich die perspektivische, sinnliche Wahrnehmung auf eine unperspektivische, transzendente

48 Dabei überkreuzen sich Gesichts- und Tastsinn aber auch - chiastisch, vgl. Merleau-Ponty 1994, 176f u. Vasseleu 1998 49 Vgl dazu Vasseleu 1998, 26

Welt.

Nicht zu vernachlässigen ist in diesem Zusammenhang die Zeitlichkeit der Wahrnehmung. Merleau-Ponty wurde häufig im Sinne Derridas dahingehend kritisiert, dass seine Philosophie an der Metaphysik der Präsenz festhalte. Zumindest für Merleau-Pontys spätere Philosophie in Das Sichtbare und das Unsichtbare erscheint dies gänzlich unbegründet, auch wenn das Rekurrieren auf die lebendige Wahrnehmung dies nahe legt. Merleau-Ponty aber schreibt immer wieder explizit von einer zeitlichen Nicht-Koinzidenz – Subjekt und Objekt fallen nicht zusammen in einem Raum- und in einem Zeitpunkt. Sein Konzept der Simultanität meint vielmehr ein Nebeneinander der Zeiten. Die Gegenwart erscheint im Lichte der Erinnerungen auf eine Zukunft hin, und die Erinnerungen wiederum im Licht dieser Gegenwart.

Farbe in der »Phänomenologie der Wahrnehmung«

Sind auch Merleau-Pontys philosophische Ansätze in *Das Sichtbare und das Unsichtbare* zu reich um hier eine adäquate Würdigung zu finden, so sollte ihre Skizzierung doch sein Bemühen deutlich gemacht haben in seiner ontologischen Bestimmung aus dem Verhältnis von Mensch und Welt das Subjekt-Objekt-Schema zu überwinden. Mit der Kritik der »Wissenschaft«, die in diesem Schema befangen bleibt, entfernt sich Merleau-Ponty aber auch von den »wissenschaftlichen« Diskursen. Es ist wohl nicht nur der unvollendeten Ausarbeitung des Textes geschuldet, das er in seiner starken Metaphorizität mitunter sehr hermetisch ist. Und so lohnt sich in unserem Zusammenhang ein Rückgang auf die *Phänomenologie der Wahrnehmung* nicht nur, weil das Werk die ausführlichste Auseinandersetzung mit dem Phänomen der Farbe bietet, sondern auch, weil immer wieder Anleihen aus der Physiologie und Psychologie getätigt werden, um sie in den phänomenologischen Diskurs einzubetten.

Das Phänomen der Farbe und die Farbwahrnehmung diskutiert Merleau-Ponty ausgehend vom Phänomen der Farbkonstanz: eine Farben-Funktion die sich erhält, auch wenn die qualitative Erscheinung auf Grund einer Änderung der Beleuchtung sich wandelt. Merleau-Ponty geht zunächst von folgendem funktionalen Zusammenhang aus: Das Phänomen der Farbkonstanz könne ohne dessen

Korrelation mit der Organisation des wahrgenommenen Feldes und der Farbe der Beleuchtung als phänomenaler Gegebenheit nicht begriffen werden. 50 Denn, wie er sagt, die »von der Physik genährte Illusion, die wahrgenommene Welt setze sich aus Farben-Qualitäten zusammen, müssen wir preisgeben«⁵¹, da ein Verständnis der Konstanz 51 Merleauder Eigenfarbe des Dings die Beachtung des Zusammenhangs zwischen Beleuchtung und beleuchtetem Ding voraussetzt. Weil aber die mit Hilfe eines Photometers messbare Strahlenmenge, die auf das Auge trifft, nachdem das beleuchtende Licht vom Gegenstand reflektiert worden ist, allein die Farbempfindung nicht determiniert, müssen Beleuchtung und beleuchtetes Objekt überdies in Beziehung gesetzt werden zur Organisation des Wahrnehmungsfeldes.⁵² Der entscheidende Faktor des Konstanzphänomens ist sodann die Artikulation der Gesamtheit des Feldes mit dem ganzen Reichtum, der ganzen Feinheit seiner Strukturen, wodurch die »empirischen Gesetze« des Konstanzphänomens verständlich werden:

50 Vgl. Merleau-Ponty 1974, 357

Ponty 1974, 354

52 Vgl. Merleau-Ponty 1974, 355f

Es ist der Größe der Netzhautfläche proportional, auf die das Angeschaute projiziert ist, und um so deutlicher, je ausgedehnter und je reicher artikuliert das auf den betreffenden Netzhautraum projizierte Weltfragment ist; es ist weniger vollkommen in peripherer Sicht als in zentraler, in monokularer als in binokularer, in kurzer als in längerer Sicht, auf weiten Abstand schwächt es sich ab, es ist unterschiedlich bei verschiedenen Individuen je nach dem Reichtum ihrer Wahrnehmungswelt; es ist endlich unvollkommener bei farbiger Beleuchtung, die die Oberflächenstruktur der Gegenstände auslöscht und das Reflexionsvermögen der verschiedenen Oberflächen nivelliert, als bei farbloser Beleuchtung, die diese Strukturdifferenzen 53 Merleaurespektiert.53

Ponty 1974, 357

Um aber verstehen zu können, wie die *Phänomene* der Farbkonstanz, der Beleuchtung sowie des Wahrnehmungsfeldes einander in der Gesamtwahrnehmung motivieren, wendet sich Merleau-Ponty zunächst der Beleuchtung zu. Als Beleuchtung kann Licht nur fungieren, wenn es als diskretes Medium seine Unaufdringlichkeit bewahrt. Bezüglich des elektrischen Lichtes schreibt Merleau-Ponty:

Das elektrische Licht, das uns gelb erscheint, wenn wir aus dem Tageslicht kommen, verliert bald für uns jede bestimmte Farbe, und wenn noch ein Rest von Tageslicht in das Zimmer eindringt, so ist dies ›objektiv neutrale‹ Licht, das uns sodann als blau erscheint. Keineswegs ist es so, als ob wir, die

gelbe Beleuchtung der Elektrizität als gelb wahrnehmend, ihr in der Einschätzung der Erscheinungen Rechnung trügen und so die Eigenfarben der Gegenstände idealiter wiederfänden. Keineswegs ist es so, als ob das gelbe Licht, in dem Maße, in dem es sich über alles ausbreitet, sich unter dem Aspekt des Tageslichtes darböte und somit die Farbe der anderen Gegenstände wirklich konstant bliebe. Vielmehr situiert sich das gelbe Licht, indem es die Funktion der Beleuchtung überhaupt übernimmt, diesseits aller Farbigkeit, tendiert es auf die Nullfarbe hin, und korrelativ verteilen die Gegenstände die Spektralfarben unter sich gemäß dem Grade und der Art des Widerstandes, den sie der neuen Atmosphäre zu bieten vermögen. Jedes Farben-quale ist also vermittelt durch eine Funktionsfarbe und bestimmt sich in bezug auf ein variables Niveau.54

54 Merleau-Ponty 1974, 360

> Bis zu diesem Punkt bewegt sich Merleau-Pontys Einführung in das Phänomen der Farbkonstanz entlang den von ihm rezipierten psychologischen und physiologischen Studien zum angesprochenen Thema. Es erscheint uns daher nun angebracht, an dieser Stelle zunächst einige einfache und grundlegende, von psychologischen und physiologischen Untersuchungen bestätigte Verhältnisse zu skizzieren, die den Zusammenhang zwischen Beleuchtung und beleuchteten Gegenstand im Hinblick auf das Phänomen der Farbkonstanz betreffen.

Unsere Wahrnehmung von Objekten hängt vom Licht ab, das von

diesen reflektiert wird. Ein Lichtstrahl wird von einer Objektoberfläche selektiv absorbiert und reflektiert, mit dem folgenden Eintreffen auf die Netzhaut wird sodann eine komplexe Folge neuronaler Prozesse in Gang gesetzt, die mit der visuellen Wahrnehmung von Farbe »asso-55 Hurvich 1981, ziiert«55 werden. Es soll uns aber in unserem Fall hauptsächlich das 52 Verhältnis zwischen Beleuchtung und beleuchtetem Objekt interessieren, weniger also die komplexen neuronalen Prozesse zwischen Netzhaut und Gehirn. Die spezifische Spektralreflexion des beleuchteten Gegenstands muss ohnehin auch ungeachtet der neuronalen Prozesse als wichtiger Faktor der Determination der Farberscheinung des Ob-1991, 53 jekts gelten. 56

56 Vgl. Pokorny/ Shevell/Smith

> Farbkonstanz ist die wahrgenommene Stabilität einer Objektfarbe trotz veränderter Beleuchtung. Zieht man in Betracht, dass eine veränderte Farberscheinung eines Objektes im Verhältnis von Beleuchtung und dem Grad der Spektralreflexion zu suchen ist, welcher von der Materialität des Objektes abhängt,⁵⁷ ist das Phänomen der Farbkon-

57 Vgl. Hurvich

stanz außerordentlich interessant: In einem komplexen, aber differenzierten Wahrnehmungsfeld kann die Farberscheinung bemerkenswert wenig vom beleuchteten Licht abhängen, obwohl eine Veränderung der Beleuchtung auch das von den Fotorezeptoren absorbierte Licht verändert. Dies liegt daran, dass sich unser Sehsystem an eine veränderte Beleuchtung anpassen kann. Zwar sind die wahrgenommenen Objektfarben unter veränderter Beleuchtung niemals gänzlich stabil, doch die menschlichen Farbwahrnehmungen sind der Konstanz erheblich näher als der Farbe, die angesichts des vom Objekt reflektierten Lichtes zu erwarten wäre.⁵⁸

58 Vgl. Pokorny/ Shevell/Smith 1991, 54 u. Hurvich 1981, 20

59 Vgl. Pokorny/ Shevell/Smith 1991, 54

Im klassischen Sinne bezieht sich die Erforschung des Konstanzphänomens primär auf veränderte Beleuchtungsbedingungen.⁵⁹ Es kann an dieser Stelle nicht dezidiert auf die einzelnen Forschungen zum Konstanzphänomen eingegangen werden. Dennoch soll kurz ein rechnergestütztes Modell vorgestellt werden, da es den funktionalen Zusammenhang zwischen Beleuchtung und Spektralreflexion des Gegenstandes mathematisch zu erfassen versucht.

Im Allgemeinen regten computistische, auf die Berücksichtigung physiologischer Mechanismen verzichtende Ansätze zur Formulierung einer Theorie der Farbkonstanz diejenigen Theoriemodelle an, die das spektrale Reflexionsvermögen von Objekten über die Anzahl der Lichtquanten, die von menschlichen Rezeptorzellen absorbiert werden, zu rekonstruieren versuchen. Da jedoch die Quanten-Absorption der Photorezeptoren (wie den menschlichen Rezeptorzellen aber auch technischen Rezeptoren) allein die Beleuchtung und das Reflexionsvermögen der Objekte nicht exakt spezifizieren kann, bleibt die Information über das spektrale Reflexionsvermögen der Objekte – auf theoretischer Ebene - uneindeutig. Computistische Modelle hingegen lösen die Mehrdeutigkeit auf, indem sie Annahmen über Beleuchtung, Reflexionsvermögen und/oder das menschliche visuelle System ansetzen. 60 Zwar fällt dabei auf, dass gerade durch die Auswahl der entsprechenden Annahmen die einzelnen computistischen Modelle sich unterscheiden, doch im Grunde suchen nahezu alle Modelle die Spektralreflexion eines Objektes ausgehend von der Information, die die Photorezeptoren liefern. Das Problem besteht jedoch darin - jedenfalls in Hinblick auf das menschliche Sehen -, dass aus dem »natürlichen«

60 Vgl. Pokorny/ Shevell/Smith 1991, 56

61 Vgl. Pokorny/ Shevell/Smith 1991, 59 Sehen kein Referenzrahmen ableitbar ist: 61 sämtliche Annahmen können letztlich nur endlich genau sein. Dennoch geben Pokorny, Shevell und Smith zu bedenken, dass eine computistische Theorie nur auf Grund dieser Ungenauigkeit der Annahmen, die die Spektra der Objekte und Beleuchtungen nicht exakt in natürlichen, nicht auf das Laboratorium beschränkten Bedingungen vorherbestimmen können, nicht prinzipiell als Modell des menschlichen Sehsystems abzulehnen sei:

62 Pokorny/ Shevell/Smith 1991, 59 Moderate errors in the assumptions usually imply measurable deviations from perfect constancy. These predicted deviations can be the best measure of a theory as a model of human vision because the visual system does not achieve perfect constancy. A full model of colour constancy must account for variation as well as stability of the colour appearance of objects.⁶²

63 Die Spektralreflexion der Objektoberfläche als deren »true color« erscheint bei Farah 2000,

Gesucht wird auf dem Wege mathematischer Berechnungen, so ist deutlich geworden, die Spektralreflexion eines Objektes, welche, zur Erinnerung, ein wichtiger Faktor der Farberscheinung des Objektes ist. Es ist dies das Bestreben, bei wechselnder Beleuchtung und das heißt aufbauend auf dem Phänomen der Farbkonstanz rechnerisch zu so etwas wie einer »true color«⁶³ des Objekts zu gelangen.

Merleau-Ponty aber bedient sich der ihm zur Verfügung stehenden, zugegebenermaßen weitaus älteren physiologischen und psychologischen Forschungsliteratur nicht, um an den Grenzen ihrer Erkenntnisse halt zu machen. Die Ausweitung dieser Grenzen durch den wissenschaftlichen Fortschritt in der Erforschung von Farbe, Farberscheinung und Farbwahrnehmung indes kann sich hinsichtlich Merleau-Pontys Philosophie nicht wirklich auswirken: Auch ein vollständiges, computistisches Modell der Farbkonstanz griffe hinsichtlich seines Ansatzes einer Phänomenologie der Wahrnehmung zu kurz. Vielmehr bettet er wissenschaftliche Erkenntnisse ein in seine phänomenologische Betrachtung von Farbe, die über jegliche physiologische oder wahrnehmungspsychologische Theorie hinausweist.

Newton hatte aus dem Licht der Sonne mittels einer Öffnung in der Fensterverblendung einen Lichtstrahl isoliert, um ihn in seine farbigen Bestandteile zu zerlegen. Merleau-Ponty aber will in der Ergründung des Phänomens der Farbe jegliche Reduktion vermeiden. In der *lebendigen* Wahrnehmung ist Farbe stets direkter Zugang zum be-

trachteten Ding selbst.⁶⁴ Wenn ich sage, ein Federhalter sei schwarz, und ich sehe ihn schwarz, so ist nach Merleau-Ponty dieses Schwarz nicht so sehr die sinnliche Qualität des Schwarzen als vielmehr eine solche des Dinges selbst. Als solche ist sie keine fixe Qualität, kein Merkmal, das in reflexiver Beurteilung *identifiziert* werden müsste. »Die wirkliche Farbe verbleibt unter allen Erscheinungen wie unter einer Figur ihr Hintergrund sich fortsetzt, d. h. also nicht als gesehene oder gedachte Qualität, sondern in einer nichtsinnlichen Gegenwart.«⁶⁵

64 Vgl. Merleau-Ponty 1974, 353

65 Merleau-Ponty 1974, 354

Grundlegend für Merleau-Pontys Philosophie ist folgendes: Der Zugang zum Ding ist Eintritt in eine hermeneutische Situation. Wahrnehmung ist nicht statuarisch, sondern von der Beleuchtung geleitet trifft sie direkt auf das Ding, das gleichsam durch seine Farbe aus sich herausgeht und in der Begegnung mit dem Blick eine bestimmte Bewegungsintention erweckt, die auf das Ding selbst abzielt. Dabei ist die Beleuchtung ein von mir zur Norm Übernommenes, das, ohne auf der Seite des Gegenstandes zu liegen, diesen beleuchtet, woraufhin er mir das Gesicht zukehrt. Die Kommunikation und Verbindung mit dem Phänomen ist es dann auch, vor deren Hintergrund Merleau-Ponty auf die Wahrnehmungskonstanten, das heißt die Konstanz von Form, Größe und Farbe abhebt. Spielt die Beleuchtung ihre Rolle als diskretes, den Blick leitendes Medium, so erfordert die Wahrnehmung die Fähigkeit, die Zerstreutheit des Sichtbaren zu versammeln und zu vollenden, »was im dargebotenen Schauspiel sich vorzeichnet.«66

66 Merleau-Ponty 1974, 359

Das Sehding gelangt zur Erscheinung, wenn mein Blick, den Verweisungen des Schauspiels folgend und die in ihm verstreuten Lichter und Schatten versammelnd, auf die erleuchtete Oberfläche fällt als das, was das Licht bekundet. Mein Blick weiß, was in dem und dem Zusammenhang der und der Lichtfleck bedeutet, er versteht die Logik der Beleuchtung. Allgemeiner noch gibt es eine Logik der Welt, der mein Leib als ganzer vermählt ist und dank welcher intersensorische Dinge für uns möglich werden. Als zu solcher Synergie befähigt, weiß mein Leib, was das Mehr oder Weniger dieser oder jener Farbe bedeutet, und erfasst unmittelbar ebenso die Bedeutung für die Darstellung und den Sinn des Gegenstandes.⁶⁷

67 Merleau-Ponty 1974, 377

Die Veränderungen des Lichts in meinem Wahrnehmungsfeld bleiben diskret und versetzen mich dabei in ein *Szenario* oder Schauspiel, das

68 Vgl. Lacan

ich – mich in ihm bewegend – zusehends verstehe. Merleau-Pontys Anführung der Beleuchtung im Theater, die meinen Blick führt, damit er das im Schauspiel Dargebotene verstehend versammelt, ist nur eine Verdeutlichung der allgemeinen Situation der Wahrnehmung. Verste-1995, 64f hen, was das Licht eröffnet, heißt im Bilde zu sein. 68 Gerade deswegen vermag uns das Licht auch zu blenden, zu verwirren und in die Irre zu führen.

1998, 28

Als Gegenentwurf zum Subjekt-Objekt-Entwurf gilt Merleau-69 Vgl. Vasseleu Ponty der Akt des Malens. 69 Ausgehend von einem Rot, einem Grün, einem Blau, erschafft der Maler die Welt neu in seinem Stil. Interessanterweise ist der Stil des verehrten Malers Cézannes kein impressionistischer - kein Stil, in der der die Wahrnehmung stillstellende Augenblick uns die Dinge in einer Atmosphäre zeigt, in der sie die Sinne unmittelbar reizen, ohne feste Konturen von Licht und Luft verbunden. Vielmehr wirkt der Gegenstand bei Cézanne »wie dumpf von innen heraus beleuchtet«70. Dies sollte man im Zusammenhang mit den oben betrachteten Interesse an der Farbkonstanz lesen - es geht darum, wie die Dinge ihre Farbe behalten, was ihnen die Beständigkeit gewährt.

70 Merleau-Ponty 1995, 43

> Cézanne wurde wegen seinen »Unrichtigkeiten« in der Perspektive seinerzeit nicht sehr geschätzt. Merleau-Ponty zitiert einen Kritiker der von »Malerei eines besoffenen Senkgrubenentleerers«⁷¹ spricht.

71 Merleau-Ponty 1995, 39

> Tatsächlich, so Merleau-Ponty, seien Cézannes Bilder gekennzeichnet von einer Treue zu Phänomenen der Wahrnehmung, die unterschieden von der geometrischen Perspektive einer fotografischen Perspektive, erst in jüngster Zeit ihre Beschreibung in der Psychologie gefunden hätten. In diesem Sinne spricht Merleau-Ponty gar von den »Forschungen Cézannes auf dem Gebiet der Perspektive«72.

72 Merleau-Ponty 1995, 45

> An den von Cézannes »erforschten« Phänomenen zeigt sich also die Ökonomie der Wissenschaft, wie sie Merleau-Ponty attestiert: Sie geht erst von einfachen Tatsachenordnungen aus und verdrängt Widersprechendes ins Subjektive, um es dann aber später als Spezialfall in die Ordnung wieder einzugliedern. Die Wissenschaft vollzieht dabei, dies sollte hinsichtlich des Farbensehens deutlich geworden sein, eine von Tatsachenordnungen ausgehende Objektivierung des Subjektiven. Wird sie aber dabei nicht doch zusehends dem Subjekt gerecht, wie

z. B. in der Anerkennung der subjektiven Aberrationen Cézannes? Es lohnt sich hier, eine oben schon angerissene Wissenschaftskritik Merleau-Pontys in voller Länge zu zitieren:

[N]irgendwo mehr hat man das Gefühl, sich einer Wissenschaft vom Menschen zu nähern. Und zwar deshalb [...], weil die Beziehungen, die sie festlegen, nur innerhalb der künstlichen Bedingungen des Laboratoriums etwas erklären können. Diese Beziehungen stellen nicht eine erste Schicht des Verhaltens dar, von welcher aus man nach und nach zu dessen umfassender Bestimmung gelangen könnte: eher sind sie eine erste Form von Integration, privilegierte Fälle einfacher Strukturierungen, die sich in Wirklichkeit qualitativ unterscheiden von den »komplexeren« Strukturierungen. Sie gelten ausschließlich auf diesem einfachen Niveau und erklären 73 Merleaunichts im Hinblick auf die höheren Ordnungen; [...]⁷³

Ponty 1994, 39

Diese Kritik könnte man folgendermaßen illustrieren: Ein Experiment, das an Hand von sukzessiv erscheinenden farbigen Lichtreizen die Funktion der Farbidentifikation bei Probanden versucht, sagt vielleicht tatsächlich nicht mehr aus, als wie unter den hergestellten Bedingungen Farbidentifikationen vorgenommen werden. Welche Rolle die Farbidentifikation innerhalb der alltäglichen Wahrnehmung spielt, in der wir Dinge oder Situationen »identifizieren« mögen, ist damit kaum beschrieben.

[U]nd schließlich ist das physische Sein nicht als Sichüberkreuzen elementarer »Kausalitäten« zu definieren, sondern es ist nur zu fassen anhand der heterogenen und diskontinuierlichen Strukturierungen, die sich ihm verwirklichen. Sobald man es mit integrierteren Strukturen zu tun hat, merkt man, dass die Bedingungen nicht so sehr das Bedingte erklären, sondern ihm viel mehr Gelegenheit geben, sich einzuschalten. Damit hat sich der vorausgesetzte Parallelismus zwischen dem Deskriptiven und dem Funktionalen als falsch erwiesen. So einfach es beispielsweise ist, die erscheinende Bewegung eines hellen Flecks innerhalb eines künstlich vereinfachten und durch die Versuchsanordnung reduzierten Erfahrungsfeldes aus ihren Bedingungen zu erklären, eine umfassende Bestimmung des konkreten Wahrnehmungsfeldes eines bestimmten lebendigen Individuums zu einem bestimmten Zeitpunkt erscheint nicht nur als vorläufig unerreichbar, sondern auch letzten Endes sinnlos, weil dieses Wahrnehmungsfeld Strukturen aufweist, die im OBJEKTIVEN Universum der zertrennten und zertrennbaren 74 Merleau-»Bedingungen« nicht einmal einen Namen haben.⁷⁴

Ponty 1994, 39

Merleau-Ponty erklärt es also für unmöglich, das Wahrnehmungsfeld in ein relationales Gefüge von Kausalitäten zu übertragen, da man es hier mit heterogenen und diskontinuierlichen Strukturierungen zu tun hat.

Dass sich indes die moderne Wissenschaft nicht mehr mit einfachen Kausalitäten befasst, die auf Systeme komplexerer Ordnung bloß übertragen werden, zeigt zum Beispiel die Erforschung chaotischer Systeme in der Physik. In solchen Systemen stellt sich in besonderem Maße das Problem der Beobachtbarkeit von Entwicklungen, das Problem des Standpunkts des Beobachters. Ist schon der Raum im allgemeinen nicht positiv zu beschreiben, da er variabel und entgrenzt ist, so dient der Phasenraum als ein auf Begrenzung beruhendes Konstrukt der Beobachtbarkeit einer Entwicklung entlang eines Zeitverlaufs, indem er dem Beobachter einen Standpunkt außerhalb des beobachteten Systems garantiert - den er ohne den Phasenraum nicht einnehmen könnte. Auf dieser Grundlage eröffnet sich dann auch ein Raum für eine mathematische Darstellung der Entwicklung, was jedoch nicht die Formulierung allgemeiner deterministischer Gesetze zulässt, in die ein neues Ereignis, ein neuer Fall nur einzufügen seien. Es ist also hier zwar das Desiderat gegeben, den Beobachter aus dem betrachteten Raum zu entfernen. Er wird dabei allerdings weniger zum unbeteiligten Zuschauer als zu einer Art Erzähler.

Neurobiologische Studien zur Wahrnehmung unterstreichen die parallele Struktur der Verarbeitung physikalischer Stimuli, die Komplexität der Interaktion der unzähligen beteiligten Nervenzellen und der einzelnen, eng vernetzten Hirnregionen. Die menschliche Wahrnehmung wird also nicht weiter über ein klassisches Reiz-Reaktions-Schema erforscht, sondern im Gegenteil als höchst dynamischer und aktiver Prozess auf der Basis parallel vernetzter Strukturen aufgefasst. Hinsichtlich der menschlichen Wahrnehmung muss von einer komplexen Koordination einer Vielzahl gleichzeitig ablaufender Prozesse zur Verarbeitung der von den Sinnesorganen kommenden Signale ausgegangen werden.

75 Vgl. Singer 2002, 65ff

> In komplexen Systemen jedoch kann eine letztgültige Gesamtschau der Phänomene wohl niemals erreicht werden, wissenschaftliche Forschung kann nicht länger von stets gültigen Gewissheiten ausgehen,

sondern muss mit Wahrscheinlichkeiten operieren, letztlich Ereignisse auf Möglichkeiten und nicht auf zeitlose Naturgesetze zurückführen. In diesem Sinne wird in die Sprache der Wissenschaft ein narratives Element eingeführt.⁷⁶

76 Vgl. Prigogine/ Stengers 1993, 16

Merleau-Ponty hingegen lehnt die Statistik [Wahrscheinlichkeit] ab, denn sie mache für das Individuum eigentlich keinen Sinn:

Wahrscheinlich, das sagt letzten Endes gar nichts. Dieser Begriff gehört in den Bereich des statistischen Denkens, da er keinerlei wirklich existierendes besonderes Ding, keinen Augenblick der Zeit, kein konkretes Geschehnis betrifft. [...] Das Wahrscheinliche ist überall und nirgends, es hat 77 Vgl. Merleaulediglich psychologische Existenz, in der Welt selber hat es keinen Platz.⁷⁷

Ponty 1974, 501

Auch wenn Merleau-Ponty an dem Paradigma der Objektivität und der Adäquationswahrheit Kritik übt, entspricht es doch dem Wahrnehmungsglauben, dass die Dinge irgendwie wesenhaft sind und dass es Gründe gibt, warum etwas so und nicht anders vor sich gegangen ist. Dabei aber ist »Freiheit« das Desiderat bei Merleau-Ponty. Er möchte den Begriff der Freiheit gegen das große Objekt stellen. Diesem ist klassischerweise das entscheidungsfreie Subjekt korreliert. Entgegen dieser Konstruktion möchte Merleau-Ponty die Freiheit dem Subjekt vorordnen, sie zu einem Phänomen des Feldes - des sinnlichen und des sinnhaften machen. 78 Doch man kann nicht umhin zu merken, wie 78 Vgl. Merleauwenig es Merleau-Ponty gelingt, diesen Begriff der Freiheit mit Verständnis zu füllen - er steht eher da wie ein Objekt auf den Bildern de Chiricos, wie ein Zeichen in einer ihm fremden Umgebung, zur falschen Zeit, auszutauschen gegen alles und nichts. Er vermag dem Begriff des Determinismus eigentlich nicht zu widersprechen, denn er ist ihm nicht verbunden. Aber auch von dieser Seite werden die Worte bedeutungslos. Singer spricht davon, dass es im Bezugsrahmen neurobiologischer Beschreibungen eigentlich keine Freiheit geben könne, da letztlich alles, das heißt vor allem die je nächste Handlung, der je nächste Zustand des Gehirns immer kausal determiniert sein müssten durch das je unmittelbar Vorausgegangene. Denkbar seien Variationen allenfalls als Folge zufälliger Fluktuationen. 79 Was heißt aber hier 79 Vgl. Singer schon Determinismus? Ist die Wahrnehmung des Menschen in der Art und Weise determiniert wie die Körper in Newtons Bewegungsmechanik und bekundet nicht gerade der Nachsatz vom Zufall - etwas,

Ponty 1974, 493-

2002, 75 f

was im Determinismus überhaupt keinen Platz hat –, dass solche relationalen Gefüge von Kausalitäten gebunden bleiben an das, was – wie man glaubt – der Fall ist, bis zu dem Zeitpunkt, an dem auf einmal ein Unfall passiert, weil die Straße plötzlich endete? Hier das Beharren auf Freiheit, dort das Beharren auf den Determinismus und fest steht dabei nur, dass man der Sprache nicht mächtig ist: Diese empfiehlt sich, verschindet und verspricht sich für einen späteren Zeitpunkt.

Eine Frage steht meist – auch hier – im Hintergrund: die Frage nach der Technik. Newtons optische Experimentalphysik steht im Zusammenhang mit seiner Entwicklung eines besseren Teleskops. Merleau-Ponty hingegen kritisiert das monokulare technische Sehen, weil es in der Wahrnehmung der Menschen droht, die eigentliche Wahrnehmung zu ersetzen. Die Perspektive der menschlichen Wahrnehmung hingegen ist erlebte Perspektive, sie ist nicht die der fotografischen oder geometrischen Perspektive:

Zu behaupten, ein von der Seite betrachteter Kreis sähe wie eine Ellipse aus, heißt der wirklichen Wahrnehmung das Schema dessen zu substituieren, was wir sehen müßten, wenn wir eine Kamera wären: In Wirklichkeit sehen wir eine Form, die um die Ellipse herum oszilliert, ohne eine Ellipse zu sein. ³⁰

80 Merleau-Ponty 1995, 45

Cézanne, so Merleau-Ponty, markiert *mehrere* Konturen eines Gegenstandes, zwischen denen der Blick hin- und herpendelt. In dieser *Bewegung* bietet sich dann dem Blick eine Kontur in status nascendi dar, »ganz so wie es in der Wahrnehmung geschieht.«⁸¹

81 Merleau-Ponty 1995, 46

Es ist die Technik, die nach statuierenden Sätzen verlangt. Ohne die Sätze der Statik vermag der Baumeister nicht den Wolkenkratzer zu bauen, denn seine Intuition sagt ihm vielleicht nicht mehr, als dass man Steine vertikal aufeinander legen muss, weil sie gegeneinander verschoben, eine Schräge bildend, umfallen.

Martin Heidegger sieht in seiner späten Philosophie, vor allem in der Frage nach der Technik, in der Wissenschaft den Komplizen der Technik, welche das Sein herstellt, dieses in Betrieb nimmt. Entspricht dies auch der Art und Weise, wie der moderne Mensch das Sein entdeckt, so bleibt in Heideggers Philosophie doch immer das Desiderat erhalten, der Mensch möge dem eigentlichen Sein in seinem Denken entsprechen.⁸²

82 Vgl. Heidegger 1994

Damit gerät der Sinn von Wissenschaft erneut in Frage: Sicherlich muss Wissenschaft mehr sein als eine von der Technik geleitete Rekonstruktion des Seins, auf der anderen Seite fehlt uns auch der Glauben an eine Philosophie, die tatsächlich einem irgendwie gearteten Sein entsprechen und damit den Wissenschaften Kompetenzen zusprechen oder abweisen könnte. Letztlich bleibt nur die Hoffnung auf eine bewegliche, nicht-hierarchische Wissenschaft, die sich durch Koperation und Konkurrenz der Beschreibungssysteme ihrer Disziplinen in der Fallbeschreibung immer wieder selbst neu strukturiert, um dem Sein des Menschen gerecht zu werden.

Literatur

- Baas, Bernard: Die phänomenologische Ausarbeitung des Objekts a: Lacan mit Kant und Merleau-Ponty. In: *Riss* 33/34 (1996), 19–50.
- Deleuze, Gilles: *Differenz und Wiederholung*. Aus dem Französischen von Joseph Vogel. München 1992.
- Descartes, René: Meditationes de prima philosophia/Meditationen über die Grundlagen der Philosphie. In: *Philosophische Schriften in einem Band*. Mit einer Einleitung von Rainer Specht. Und »Descartes' Wahrheitsbegriff« von Ernst Cassirer. Hamburg 1996.
- Farah, Martha J.: *The cognitive neuroscience of vision* (Fundamentals of cognitive neuroscience; Bd. 3). Oxford 2000.
- Foucault, Michel: *Die Ordnung der Dinge. Eine Archäologie der Human-wissenschaften.* Frankfurt/M. ⁹1990.
- Hall, A. Rupert: *All was light: an introduction to Newton's opticks*. Oxford 1995.
- Heidegger, Martin: *Die Frage nach der Technik*. In: Heidegger, Martin: *Vorträge und Aufsätze*. Stuttgart ⁷1994. S. 9–40.
- Hurvich, Leo M.: Color vision. Sunderland 1981.
- Lacan, Jacques: Linie und Licht. In: *Was ist ein Bild?* Herausgegeben von Gottfried Boehm. München ²1995. S. 60–74.
- Merleau-Ponty, Maurice: *Phänomenologie der Wahrnehmung*. Aus dem Französischen übersetzt und eingeführt durch eine Vorrede von Rudolf Boehm. Photomechanischer Nachdruck der Ausgabe von 1966. Berlin 1974.
- Merleau-Ponty, Maurice: Die Prosa der Welt. München 1984.

- Merleau-Ponty, Maurice: *Das Sichtbare und das Unsichtbare*: gefolgt von Arbeitsnotizen. Herausgegeben und mit einem Vor- und Nachwort versehen von Claude Lefort. Aus dem Französischen von Regula Giuliani und Bernhard Waldenfels. München 1994.
- Merleau-Ponty, Maurice: Der Zweifel Cézannes. In: *Was ist ein Bild?* Herausgegeben von Gottfried Boehm. München ²1995. S. 39–59.
- Newton, Isaac: Optik oder Abhandlung über Spiegelungen, Brechungen, Beugungen und Farben des Lichts. Übersetzt und herausgegeben von William Abendroth. Nachdruck der Ausgabe Leipzig 1898. Eingeleitet und erläutert von Markus Fierz. Braunschweig, Wiesbaden 1983.
- Pokorny, Joel/Shevell, Steven K./Smith, Vivianne C.: Colour appearance and colour constancy. In: Gouras, Peter (Hg.): *The perception of colour* (Vision and visual dysfunction; Bd. 6). Basingstoke 1991. S. 43–61.
- Prigogine, Ilya/Stengers, Isabelle: Das Paradox der Zeit. Zeit, Chaos und Quanten. München 1993.
- Sepper, Dennis L.: Newton's optical writings. A guided study. New Brunswick 1994.
- Singer, Wolf: Der Beobachter im Gehirn. Essays zur Hirnforschung. Frankfurt/M. 2002.
- Vasseleu, Cathryn: Textures of light: vision and touch in Irigaray, Levinas and Merleau-Ponty (Warwick studies in European philosophy). London u. a. 1998.
- Wasserman, Gerald S.: *Color vision: an historical introduction* (Wiley series in behavior). New York u. a. 1978.